Target specific mining of COVID-19 scholarly articles using one-class approach
Sanjay Kumar Sonbhadra,
Sonali Agarwal and
P. Nagabhushan
Chaos, Solitons & Fractals, 2020, vol. 140, issue C
Abstract:
The novel coronavirus disease 2019 (COVID-19) began as an outbreak from epicentre Wuhan, People’s Republic of China in late December 2019, and till June 27, 2020 it caused 9,904,906 infections and 496,866 deaths worldwide. The world health organization (WHO) already declared this disease a pandemic. Researchers from various domains are putting their efforts to curb the spread of coronavirus via means of medical treatment and data analytics. In recent years, several research articles have been published in the field of coronavirus caused diseases like severe acute respiratory syndrome (SARS), middle east respiratory syndrome (MERS) and COVID-19. In the presence of numerous research articles, extracting best-suited articles is time-consuming and manually impractical. The objective of this paper is to extract the activity and trends of coronavirus related research articles using machine learning approaches to help the research community for future exploration concerning COVID-19 prevention and treatment techniques. The COVID-19 open research dataset (CORD-19) is used for experiments, whereas several target-tasks along with explanations are defined for classification, based on domain knowledge. Clustering techniques are used to create the different clusters of available articles, and later the task assignment is performed using parallel one-class support vector machines (OCSVMs). These defined tasks describes the behavior of clusters to accomplish target-class guided mining. Experiments with original and reduced features validate the performance of the approach. It is evident that the k-means clustering algorithm, followed by parallel OCSVMs, outperforms other methods for both original and reduced feature space.
Keywords: COVID-2019; One-class classification; Clustering; CORD-19; One-class support vector machine (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077920305518
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920305518
DOI: 10.1016/j.chaos.2020.110155
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().