A Bayesian approach for monitoring epidemics in presence of undetected cases
Andrea De Simone and
Marco Piangerelli
Chaos, Solitons & Fractals, 2020, vol. 140, issue C
Abstract:
One of the key indicators used in tracking the evolution of an infectious disease is the reproduction number. This quantity is usually computed using the reported number of cases, but ignoring that many more individuals may be infected (e.g. asymptomatic carriers). We develop a Bayesian procedure to quantify the impact of undetected infectious cases on the determination of the effective reproduction number. Our approach is stochastic, data-driven and not relying on any compartmental model. It is applied to the COVID-19 outbreak in eight different countries and all Italian regions, showing that the effect of undetected cases leads to estimates of the effective reproduction numbers larger than those obtained only with the reported cases by factors ranging from two to ten.
Keywords: Bayesian inference; Stochastic process; Computational epidemiology; COVID-19 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077920305634
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920305634
DOI: 10.1016/j.chaos.2020.110167
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().