Diagnosis and detection of infected tissue of COVID-19 patients based on lung x-ray image using convolutional neural network approaches
Shayan Hassantabar,
Mohsen Ahmadi and
Abbas Sharifi
Chaos, Solitons & Fractals, 2020, vol. 140, issue C
Abstract:
COVID-19 pandemic has challenged the world science. The international community tries to find, apply, or design novel methods for diagnosis and treatment of COVID-19 patients as soon as possible. Currently, a reliable method for the diagnosis of infected patients is a reverse transcription-polymerase chain reaction. The method is expensive and time-consuming. Therefore, designing novel methods is important. In this paper, we used three deep learning-based methods for the detection and diagnosis of COVID-19 patients with the use of X-Ray images of lungs. For the diagnosis of the disease, we presented two algorithms include deep neural network (DNN) on the fractal feature of images and convolutional neural network (CNN) methods with the use of the lung images, directly. Results classification shows that the presented CNN architecture with higher accuracy (93.2%) and sensitivity (96.1%) is outperforming than the DNN method with an accuracy of 83.4% and sensitivity of 86%. In the segmentation process, we presented a CNN architecture to find infected tissue in lung images. Results show that the presented method can almost detect infected regions with high accuracy of 83.84%. This finding also can be used to monitor and control patients from infected region growth.
Keywords: COVID-19; CNN; DNN; Artificial intelligence; Classification; Segmentation (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007792030566X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:140:y:2020:i:c:s096007792030566x
DOI: 10.1016/j.chaos.2020.110170
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().