On the dynamical modeling of COVID-19 involving Atangana–Baleanu fractional derivative and based on Daubechies framelet simulations
Mutaz Mohammad and
Alexander Trounev
Chaos, Solitons & Fractals, 2020, vol. 140, issue C
Abstract:
In this paper, we present a novel fractional order COVID-19 mathematical model by involving fractional order with specific parameters. The new fractional model is based on the well-known Atangana–Baleanu fractional derivative with non-singular kernel. The proposed system is developed using eight fractional-order nonlinear differential equations. The Daubechies framelet system of the model is used to simulate the nonlinear differential equations presented in this paper. The framelet system is generated based on the quasi-affine setting. In order to validate the numerical scheme, we provide numerical simulations of all variables given in the model.
Keywords: Fractional differential equations; Novel coronavirus; Daubechies wavelet; Tight frame; Mathematical model (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077920305671
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920305671
DOI: 10.1016/j.chaos.2020.110171
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().