EconPapers    
Economics at your fingertips  
 

On forecasting the spread of the COVID-19 in Iran: The second wave

Behzad Ghanbari

Chaos, Solitons & Fractals, 2020, vol. 140, issue C

Abstract: One of the common misconceptions about COVID-19 disease is to assume that we will not see a recurrence after the first wave of the disease has subsided. This completely wrong perception causes people to disregard the necessary protocols and engage in some misbehavior, such as routine socializing or holiday travel. These conditions will put double pressure on the medical staff and endanger the lives of many people around the world. In this research, we are interested in analyzing the existing data to predict the number of infected people in the second wave of out-breaking COVID-19 in Iran. For this purpose, a model is proposed. The mathematical analysis corresponded to the model is also included in this paper. Based on proposed numerical simulations, several scenarios of progress of COVID-19 corresponding to the second wave of the disease in the coming months, will be discussed. We predict that the second wave of will be most severe than the first one. From the results, improving the recovery rate of people with weak immune systems via appropriate medical incentives is resulted as one of the most effective prescriptions to prevent the widespread unbridled outbreak of the second wave of COVID-19.

Keywords: COVID-19; The second wave; Dynamic systems; Infectious disease; Forecasting of the epidemic (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077920305725
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920305725

DOI: 10.1016/j.chaos.2020.110176

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920305725