EconPapers    
Economics at your fingertips  
 

Assessment of impact of relaxation in lockdown and forecast of preparation for combating COVID-19 pandemic in India using Group Method of Data Handling

Vaibhav Vaishnav and Jayashri Vajpai

Chaos, Solitons & Fractals, 2020, vol. 140, issue C

Abstract: Ever since the outbreak of novel coronavirus in December 2019, lockdown has been identified as the only effective measure across the world to stop the community spread of this pandemic. India implemented a complete shutdown across the nation from March 25, 2020 as lockdown I and went on to extend it by giving timely partial relaxations in the form of lockdown II, III & IV. This paper statistically analyses the impact of relaxation during Lockdown III and IV on coronavirus disease (COVID) spread in India using the Group Method of Data Handling (GMDH) to forecast the number of active cases using time series analysis and hence the required medical infrastructure for the period of next six months. The Group Method of Data Handling is a novel self organized data mining technique with data driven adaptive learning capability which grasps the auto correlative relations between the samples and gives a high forecasting accuracy irrespective of the length and stochasticity of a time series. The GMDH model has been first validated and standardized by forecasting the number of active and confirmed cases during lockdown III-IV with an accuracy of 2.58% and 2.00% respectively. Thereafter, the number of active cases has been forecasted for the rest of 2020 to predict the impact of lockdown relaxation on spread of COVID-19 and indicate preparatory measures necessary to counter it.

Keywords: COVID-19; Time series forecasting; Group method of data handling (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077920305877
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920305877

DOI: 10.1016/j.chaos.2020.110191

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920305877