Modeling epidemics through ladder operators
F. Bagarello,
F. Gargano and
F. Roccati
Chaos, Solitons & Fractals, 2020, vol. 140, issue C
Abstract:
We propose a simple model of spreading of some infection in an originally healthy population which is different from other models existing in the literature. In particular, we use an operator technique which allows us to describe in a natural way the possible interactions between healthy and un-healthy populations, and their transformation into recovered and to dead people. After a rather general discussion, we apply our method to the analysis of Chinese data for the SARS-2003 (Severe acute respiratory syndrome; SARS-CoV-1) and the Coronavirus COVID-19 (Corona Virus Disease; SARS-CoV-2) and we show that the model works very well in reproducing the long-time behaviour of the disease, and in particular in finding the number of affected and dead people in the limit of large time. Moreover, we show how the model can be easily modified to consider some lockdown measure, and we deduce that this procedure drastically reduces the asymptotic value of infected individuals, as expected, and observed in real life.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077920305890
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920305890
DOI: 10.1016/j.chaos.2020.110193
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().