Neural network powered COVID-19 spread forecasting model
Michał Wieczorek,
Jakub Siłka and
Marcin Woźniak
Chaos, Solitons & Fractals, 2020, vol. 140, issue C
Abstract:
Virus spread prediction is very important to actively plan actions. Viruses are unfortunately not easy to control, since speed and reach of spread depends on many factors from environmental to social ones. In this article we present research results on developing Neural Network model for COVID-19 spread prediction. Our predictor is based on classic approach with deep architecture which learns by using NAdam training model. For the training we have used official data from governmental and open repositories. Results of prediction are done for countries but also regions to provide possibly wide spectrum of values about predicted COVID-19 spread. Results of the proposed model show high accuracy, which in some cases reaches above 99%.
Keywords: COVID-19; Prediction; Neural network (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077920305993
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920305993
DOI: 10.1016/j.chaos.2020.110203
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().