EconPapers    
Economics at your fingertips  
 

A new approach on the approximate controllability of fractional differential evolution equations of order 1 < r < 2 in Hilbert spaces

M. Mohan Raja, V. Vijayakumar, R. Udhayakumar and Yong Zhou

Chaos, Solitons & Fractals, 2020, vol. 141, issue C

Abstract: This manuscript is mainly focusing on approximate controllability for fractional differential evolution equations of order 1 < r < 2 in Hilbert spaces. We consider a class of control systems governed by the fractional differential evolution equations. By using the results on fractional calculus, cosine and sine functions of operators, and Schauder’s fixed point theorem, a new set of sufficient conditions are formulated which guarantees the approximate controllability of fractional differential evolution systems. The results are established under the assumption that the associated linear system is approximately controllable. Then, we develop our conclusions to the ideas of nonlocal conditions. Lastly, we present theoretical and practical applications to support the validity of the study.

Keywords: Approximate controllability; Fractional derivative; Mild solutions; Mainardi’s wright-type function (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077920307062
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:141:y:2020:i:c:s0960077920307062

DOI: 10.1016/j.chaos.2020.110310

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:141:y:2020:i:c:s0960077920307062