Isfahan and Covid-19: Deep spatiotemporal representation
Rahele Kafieh,
Narges Saeedizadeh,
Roya Arian,
Zahra Amini,
Nasim Dadashi Serej,
Atefeh Vaezi and
Shaghayegh Haghjooy Javanmard
Chaos, Solitons & Fractals, 2020, vol. 141, issue C
Abstract:
The coronavirus COVID-19 is affecting 213 countries and territories around the world. Iran was one of the first affected countries by this virus. Isfahan, as the third most populated province of Iran, experienced a noticeable epidemic. The prediction of epidemic size, peak value, and peak time can help policymakers in correct decisions. In this study, deep learning is selected as a powerful tool for forecasting this epidemic in Isfahan. A combination of effective Social Determinant of Health (SDH) and the occurrences of COVID-19 data are used as spatiotemporal input by using time-series information from different locations. Different models are utilized, and the best performance is found to be for a tailored type of long short-term memory (LSTM). This new method incorporates the mutual effect of all classes (confirmed/ death / recovered) in the prediction process. The future trajectory of the outbreak in Isfahan is forecasted with the proposed model. The paper demonstrates the positive effect of adding SDHs in pandemic prediction. Furthermore, the effectiveness of different SDHs is discussed, and the most effective terms are introduced. The method expresses high ability in both short- and long- term forecasting of the outbreak. The model proves that in predicting one class (like the number of confirmed cases), the effect of other accompanying numbers (like death and recovered cases) cannot be ignored. In conclusion, the superiorities of this model (particularity the long term predication ability) turn it into a reliable tool for helping the health decision-makers.
Keywords: COVID-19; Isfahan; Predication; Deep learning (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077920307347
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:141:y:2020:i:c:s0960077920307347
DOI: 10.1016/j.chaos.2020.110339
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().