Numerical study for time fractional stochastic semi linear advection diffusion equations
N.H. Sweilam,
D.M. El-Sakout and
M.M. Muttardi
Chaos, Solitons & Fractals, 2020, vol. 141, issue C
Abstract:
In this work, a stochastic fractional advection diffusion model with multiplicative noise is studied numerically. The Galerkin finite element method in space and finite difference in time are used, where the fractional derivative is in Caputo sense. The error analysis is investigated via Galerkin finite element method. In terms of the Mittag Leffler function, the mild solution is obtained. For the error estimates, the strong convergence for the semi and fully discrete schemes are proved in a semigroup structure. Finally, two numerical examples are given to confirm the theoretical results.
Keywords: Caputo fractional derivative; Stochastic advection diffusion equations; Mittag Leffler function; Galerkin finite element method (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077920307414
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:141:y:2020:i:c:s0960077920307414
DOI: 10.1016/j.chaos.2020.110346
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().