EconPapers    
Economics at your fingertips  
 

Hopf bifurcations in a class of reaction-diffusion equations including two discrete time delays: An algorithm for determining Hopf bifurcation, and its applications

Ş. Bilazeroğlu and H. Merdan

Chaos, Solitons & Fractals, 2021, vol. 142, issue C

Abstract: We analyze Hopf bifurcation and its properties of a class of system of reaction-diffusion equations involving two discrete time delays. First, we discuss the existence of periodic solutions of this class under Neumann boundary conditions, and determine the required conditions on parameters of the system at which Hopf bifurcation arises near equilibrium point. Bifurcation analysis is carried out by choosing one of the delay parameter as a bifurcation parameter and fixing the other in its stability interval. Second, some properties of periodic solutions such as direction of Hopf bifurcation and stability of bifurcating periodic solution are studied through the normal form theory and the center manifold reduction for functional partial differential equations.

Keywords: Hopf bifurcation; Functional partial differential equations; Reaction-diffusion system; Delay differential equations; Stability; Periodic solutions; Discrete time delays (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077920307852
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:142:y:2021:i:c:s0960077920307852

DOI: 10.1016/j.chaos.2020.110391

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:142:y:2021:i:c:s0960077920307852