SEAIR Epidemic spreading model of COVID-19
Lasko Basnarkov
Chaos, Solitons & Fractals, 2021, vol. 142, issue C
Abstract:
We study Susceptible-Exposed-Asymptomatic-Infectious-Recovered (SEAIR) epidemic spreading model of COVID-19. It captures two important characteristics of the infectiousness of COVID-19: delayed start and its appearance before onset of symptoms, or even with total absence of them. The model is theoretically analyzed in continuous-time compartmental version and discrete-time version on random regular graphs and complex networks. We show analytically that there are relationships between the epidemic thresholds and the equations for the susceptible populations at the endemic equilibrium in all three versions, which hold when the epidemic is weak. We provide theoretical arguments that eigenvector centrality of a node approximately determines its risk to become infected.
Keywords: COVID-19; Epidemic spreading; Complex networks; Eigenvector centrality; SEAIR epidemic model; Jacobian matrix eigenvectors (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077920307876
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:142:y:2021:i:c:s0960077920307876
DOI: 10.1016/j.chaos.2020.110394
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().