EconPapers    
Economics at your fingertips  
 

Evolutionary dynamics in the rock-paper-scissors system by changing community paradigm with population flow

Junpyo Park

Chaos, Solitons & Fractals, 2021, vol. 142, issue C

Abstract: Classic frameworks of rock-paper-scissors game have been assumed in a closed community that a density of each group is only affected by internal factors such as competition interplay among groups and reproduction itself. In real systems in ecological and social sciences, however, the survival and a change of a density of a group can be also affected by various external factors. One of common features in real population systems in ecological and social sciences is population flow that is characterized by population inflow and outflow in a group or a society, which has been usually overlooked in previous works on models of rock-paper-scissors game. In this paper, we suggest the rock-paper-scissors system by implementing population flow and investigate its effect on biodiversity. For two scenarios of either balanced or imbalanced population flow, we found that the population flow can strongly affect group diversity by exhibiting rich phenomena. In particular, while the balanced flow can only lead the persistent coexistence of all groups which accompanies a phase transition through supercritical Hopf bifurcation on different carrying simplices, the imbalanced flow strongly facilitates rich dynamics such as alternative stable survival states by exhibiting various group survival states and multistability of sole group survivals by showing not fully covered but spirally entangled basins of initial densities due to local stabilities of associated fixed points. In addition, we found that, the system can exhibit oscillatory dynamics for coexistence by relativistic interplay of population flows which can capture the robustness of the coexistence state. Applying population flow in the rock-paper-scissors system can ultimately change a community paradigm from closed to open one, and our foundation can eventually reveal that population flow can be also a significant factor on a group density which is independent to fundamental interactions among groups.

Keywords: Rock-paper-scissors game; Population flow; Community paradigm; Multistability; Oscillatory behavior (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077920308171
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:142:y:2021:i:c:s0960077920308171

DOI: 10.1016/j.chaos.2020.110424

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:142:y:2021:i:c:s0960077920308171