Stabilization of inertial Cohen-Grossberg neural networks with generalized delays: A direct analysis approach
Siyu Han,
Cheng Hu,
Juan Yu,
Haijun Jiang and
Shiping Wen
Chaos, Solitons & Fractals, 2021, vol. 142, issue C
Abstract:
The paper is mainly devoted to the stabilization problem of Cohen-Grossberg type inertial neural networks (INNs) with generalized delays by developing a direct analysis approach to replace the previous transformations of reduced order. Above all, a generalized form of time delays is developed to unify discrete constant delays, discrete variable delays and proportional delays. In stabilization analysis, in the absence of variable substitutions, a direct method is proposed by constructing Lyapunov functionals and designing control schemes for the addressed second-order Cohen-Grossberg INNs to achieve asymptotical or adaptive stabilization. The obtained criteria are simpler and more easily verified in applications compared with the related existing results. At last, three specified examples are provided to verify the theoretical results.
Keywords: Asymptotic stabilization; Adaptive control; Generalized delay; Inertial Cohen-Grossberg neural network (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077920308250
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:142:y:2021:i:c:s0960077920308250
DOI: 10.1016/j.chaos.2020.110432
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().