EconPapers    
Economics at your fingertips  
 

On simulating the short and long memory of ergodic Markov and Non-Markov genetic diffusion processes on the long run

E.A. Abdel-Rehim, R.M. Hassan and A.M.A. El-Sayed

Chaos, Solitons & Fractals, 2021, vol. 142, issue C

Abstract: The theory of classical ergodic Markov genetic diffusion process, Feller genetic diffusion, and the genetic drift diffusion with and without selection and mutation for a single unlinked locus with two alleles, Kimura models, is studied. These genetic problems are numerically investigated on the long run. The approximates solutions of these models are described as the conditional probabilities to find the specific gene with frequencies between zero and one at generation T. As a surprise, we notice that the summation of these approximate solutions lose their unity rapidly as the number of generations increase than five, i.e. T>>5. The earlier biologists did due the reason to the migration, immigration and death of individuals. Till now, there is no mathematical proof to this phenomenon. In this paper, we solve this problem by extending the first order time derivative to the time fractional derivative, to study the effect of the memory on these models. This extension ensures that the summations of the approximate solutions, i.e. of the Non-Markov cases, are one at any number of generations. The time evolution of the approximate solutions are simulated and compared with other published papers, for different values of generations and for the Markov and Non-Markov cases with different values of the fractional order β. The convergence of the approximate descrete solutions and the reversibility property of these stochastic processes for both the Markov cases and Non-Markov cases are also numerically simulated and discussed.

Keywords: Ergodic Markov chain; Approximate solution; Genetic diffusion equation; Genetic drift equation; Explicit scheme; Grünwald-Letnikov scheme; Caputo time fractional; Stationary solution; Reversibility property; Simulation (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077920308705
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:142:y:2021:i:c:s0960077920308705

DOI: 10.1016/j.chaos.2020.110478

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:142:y:2021:i:c:s0960077920308705