A close look at 2019 novel coronavirus (COVID 19) infections in Turkey using time series analysis & efficiency analysis
Harun Kınacı,
Mehmet Güray Ünsal and
Reşat Kasap
Chaos, Solitons & Fractals, 2021, vol. 143, issue C
Abstract:
2019 novel coronavirus (COVID 19) infections detected as the first official records of the disease in Wuhan, China, affected almost all countries worldwide, including Turkey. Due to the number of infected cases, Turkey is one of the most affected countries in the world. Thus, an examination of the pandemic data of Turkey is a critical issue to understand the shape of the spread of the virus and its effects. In this study, we have a close look at the data of Turkey in terms of the variables commonly used during the pandemic to set an example for possible future pandemics. Both time series modeling and popular efficiency measurement methods are used to evaluate the data and enrich the results. It is believed that the results and discussions are useful and can contribute to the language of numbers for pandemic researchers working on the elimination of possible future pandemics.
Keywords: COVID 19; Pandemic; Time series analysis; Efficiency analysis (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077920309747
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:143:y:2021:i:c:s0960077920309747
DOI: 10.1016/j.chaos.2020.110583
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().