EconPapers    
Economics at your fingertips  
 

A class of time-fractional Dirac type operators

Dumitru Baleanu, Joel E. Restrepo and Durvudkhan Suragan

Chaos, Solitons & Fractals, 2021, vol. 143, issue C

Abstract: By using a Witt basis, a new class of time-fractional Dirac type operators with time-variable coefficients is introduced. These operators lead to considering a wide range of fractional Cauchy problems. Solutions of the considered general fractional Cauchy problems are given explicitly. The representations of the solutions can be used efficiently for analytic and computational purposes. We apply the obtained representation of a solution to recover a variable coefficient solution of an inverse fractional Cauchy problem. Some concrete examples are given to show the diversity of the obtained results.

Keywords: Fractional integro-differential operator; Cauchy problem; time-fractional Dirac operators; inverse problem (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077920309814
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:143:y:2021:i:c:s0960077920309814

DOI: 10.1016/j.chaos.2020.110590

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:143:y:2021:i:c:s0960077920309814