Revisiting the Mazur bound and the Suzuki equality
Abhishek Dhar,
Aritra Kundu and
Keiji Saito
Chaos, Solitons & Fractals, 2021, vol. 144, issue C
Abstract:
Among the few known rigorous results for time-dependent equilibrium correlations, important for understanding transport properties, are the Mazur bound and the Suzuki equality. The Mazur inequality gives a lower bound, on the long-time average of the time-dependent auto-correlation function of observables, in terms of equilibrium correlation functions involving conserved quantities. On the other hand, Suzuki proposes an exact equality for quantum systems. In this paper, we discuss the relation between the two results and in particular, look for the analogue of the Suzuki result for classical systems. This requires us to examine as to what constitutes a complete set of conserved quantities required to saturate the Mazur bound. We present analytic arguments as well as illustrative numerical results from a number of different systems. Our examples include systems with few degrees of freedom as well as many-particle integrable models, both free and interacting.
Keywords: Mazur bound; Integrable systems; Auto-correlation functions and ergodicity (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077920310092
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:144:y:2021:i:c:s0960077920310092
DOI: 10.1016/j.chaos.2020.110618
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().