Deterministic and stochastic analysis for different types of regulations in the spontaneous emergence of cell polarity
Yue Liu and
Wing-Cheong Lo
Chaos, Solitons & Fractals, 2021, vol. 144, issue C
Abstract:
Spontaneous emergence of cell polarity intrinsically lies at the localization of signaling molecules on a particular region of cell membrane. Such a process necessarily contains a positive feedback loop to amplify the localized cluster. To describe the polarizing process and explore different feedback functions involved, deterministic and stochastic models with non-local kinetics are discussed in this paper. Stochastic Simulation Algorithm (SSA) is used to numerically simulate the polarizing behavior and analytical analysis by the power spectrum is applied to approximate the parameter regime for the spontaneous emergence of cell polarity. Compared to the results from the deterministic model, we can understand how the stochastic effect extends the parameter regime for achieving cell polarization under different types of feedback, including the forms of quadratic function, linear function, and Hill function. Both deterministic and stochastic methods fail to yield the polarity at a low number of molecules. Our results suggest that the parameter region for cell polarization under the Hill function feedback is smaller than that with the quadratic function feedback.
Keywords: Reaction-diffusion system; Non-local kinetics; Stochastic model; Linear noise approximation; Feedback regulation (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077920310110
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:144:y:2021:i:c:s0960077920310110
DOI: 10.1016/j.chaos.2020.110620
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().