Logistic-like and Gauss coupled maps: The born of period-adding cascades
Diogo Ricardo da Costa,
Julia G.S. Rocha,
Luam S. de Paiva and
Rene O. Medrano-T
Chaos, Solitons & Fractals, 2021, vol. 144, issue C
Abstract:
In this paper we study a logistic-like and Gauss coupled maps to investigate the period-adding phenomenon, where infinite sets of periodicity (p) form a sequence in planar parameter spaces, such that, the periodicity of adjacent elements differ by a same constant (ρ) in the whole sequence (pi+1−pi=ρ). We describe the complete mechanism that form this sequence from a closed domain of isoperiodicity. Changing a control parameter, infinite different periodicities ring-shaped take place in this domain promoting regions of chaoticity. In this environment several complex sets of periodicity arise aligning themselves in sequences of period-adding, which is a common scenario that appears in a great variety of nonlinear dynamical systems. The complete process is unraveled by applying the theory of extreme orbits.
Keywords: Chaos; Nonlinear dynamics; Mappings; Dissipative systems (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077921000412
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:144:y:2021:i:c:s0960077921000412
DOI: 10.1016/j.chaos.2021.110688
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().