Mathematical modeling and analysis for controlling the spread of infectious diseases
Swati Tyagi,
Subash C. Martha,
Syed Abbas and
Amar Debbouche
Chaos, Solitons & Fractals, 2021, vol. 144, issue C
Abstract:
In this work, we present and discuss the approaches, that are used for modeling and surveillance of dynamics of infectious diseases by considering the early stage asymptomatic and later stage symptomatic infections. We highlight the conceptual ideas and mathematical tools needed for such infectious disease modeling. We compute the basic reproduction number of the proposed model and investigate the qualitative behaviours of the infectious disease model such as, local and global stability of equilibria for the non-delayed as well as delayed system. At the end, we perform numerical simulations to validate the effectiveness of the derived results.
Keywords: Infectious diseases; Mathematical model; Basic reproduction number; Stability analysis; Lyapunov function; Time delay; Hopf Bifurcation (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077921000606
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:144:y:2021:i:c:s0960077921000606
DOI: 10.1016/j.chaos.2021.110707
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().