The Cyclicity of coronavirus cases: “Waves” and the “weekend effect”
Vladislav Soukhovolsky,
Anton Kovalev,
Anne Pitt,
Katerina Shulman,
Olga Tarasova and
Boris Kessel
Chaos, Solitons & Fractals, 2021, vol. 144, issue C
Abstract:
Medical statistics is one of the "milestones" of current medical systems. It is the foundation for many protocols, including medical care systems, government recommendations, epidemic planning, etc. At this time of global COVID-19, credible data on epidemic spread can help governments make better decisions. This study's aim is to evaluate the cyclicity in the number of daily diagnosed coronavirus patients, thus allowing governments to plan how to allocate their resources more effectively.
Keywords: Coronavirus; dynamics; time series; waves; week end effect; spectral analysis; autoregression (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077921000710
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:144:y:2021:i:c:s0960077921000710
DOI: 10.1016/j.chaos.2021.110718
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().