EconPapers    
Economics at your fingertips  
 

Managing awareness can avoid hysteresis in disease spread: an application to coronavirus Covid-19

Deborah Lacitignola and Giuseppe Saccomandi

Chaos, Solitons & Fractals, 2021, vol. 144, issue C

Abstract: A SEIR-type model is investigated to evaluate the effects of awareness campaigns in the presence of factors that can induce overexposure to disease. We find that high levels of overexposure can drive system dynamics towards a backward phenomenology and that increasing people awareness through balanced and aware information can be crucial to avoid dangerous dynamical transitions as hysteresis or transient oscillations before disease eradication. Investigations in the time dependent regimes are provided to support the results. Google Trends data in the context of Covid19 are also used to stress how low levels of awareness, combined with high overexposure, can be related to recent episodes of epidemic resurgence in Europe. Our results suggest that the interplay between overexposure and awareness is a point that should not be underestimated both in the current and future management of the Covid19 emergency.

Keywords: Epidemic models; Backward bifurcation; Hysteresis; Awareness; Covid-19 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077921000928
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:144:y:2021:i:c:s0960077921000928

DOI: 10.1016/j.chaos.2021.110739

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:144:y:2021:i:c:s0960077921000928