Blowing-up Solutions of Distributed Fractional Differential Systems
Bashir Ahmad,
Ahmed Alsaedi and
Mokhtar Kirane
Chaos, Solitons & Fractals, 2021, vol. 145, issue C
Abstract:
We first show that any solution to a nonlinear equation involving a distributed fractional derivative blows-up in a finite time. Then we extend our analysis to a system of nonlinear equations involving distributed fractional derivatives of different orders with different weight functions. Our results rely on the non-linear capacity method.
Keywords: Distributed fractional derivative; blow-up; system of equations; ε-Young’s inequality; Hölder’s inequality (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077921001004
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:145:y:2021:i:c:s0960077921001004
DOI: 10.1016/j.chaos.2021.110747
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().