EconPapers    
Economics at your fingertips  
 

A novel no-equilibrium HR neuron model with hidden homogeneous extreme multistability

Sen Zhang, Jiahao Zheng, Xiaoping Wang and Zhigang Zeng

Chaos, Solitons & Fractals, 2021, vol. 145, issue C

Abstract: In this paper, a novel no-equilibrium Hindmarsh-Rose (HR) neuron model with memristive electromagnetic induction is proposed. This memristive HR neuron model exhibits complex memristor initial offset boosting dynamics, from which infinitely many coexisting hidden attractors sharing the same shape but with different positions can be generated, therefore breeding the interesting phenomenon of hidden homogeneous extreme multistability. The complicated dynamical behaviors are detailedly investigated via bifurcation diagrams, Lyapunov exponents, time series, attraction basins and spectral entropy (SE) complexity. Moreover, PSIM circuit simulations and DSP hardware experiments are carried out to demonstrate the theoretical analyses and numerical simulations. Finally, a pseudorandom number generator is also designed by using the memristor initial-controlled chaotic sequences extracted from the memristive HR neuron model. The performance analysis results show that these chaotic sequences can yield pseudorandom numbers with excellent randomness, which are more suitable for chaos-based engineering applications.

Keywords: Memristive HR neuron model; initial offset boosting; homogeneous multistability; initial-controlled chaotic sequence; pseudorandom number generator (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077921001132
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:145:y:2021:i:c:s0960077921001132

DOI: 10.1016/j.chaos.2021.110761

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:145:y:2021:i:c:s0960077921001132