Numerical approximations to the nonlinear fractional-order Logistic population model with fractional-order Bessel and Legendre bases
Mohammad Izadi and
H.M. Srivastava
Chaos, Solitons & Fractals, 2021, vol. 145, issue C
Abstract:
The main aim of this manuscript is to obtain the approximate solutions of the nonlinear Logistic equation of fractional order by developing a collocation approach based on the fractional-order Bessel and Legendre functions. The main characteristic of these polynomial approximation techniques is that they transform the governing differential equation into a system of algebraic equations, thus the computational efforts will be greatly reduced. Our secondary aim is to show a comparative investigation on the use of these fractional-order polynomials and to examine their utilities to solve the model problem. Numerical experiments are carried out to demonstrate the validity and applicability of the presented techniques and comparisons are made with methods available in the standard literature. The methods perform very well in terms of efficiency and simplicity to solve this population model especially when the Legendre bases are utilized.
Keywords: Bessel functions; Collocation scheme; Fractional Liouville-Caputo derivative; Legendre functions; Logistic differential equation (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077921001314
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:145:y:2021:i:c:s0960077921001314
DOI: 10.1016/j.chaos.2021.110779
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().