Global Lagrange stability analysis of retarded SICNNs
Ardak Kashkynbayev,
Jinde Cao and
Durvudkhan Suragan
Chaos, Solitons & Fractals, 2021, vol. 145, issue C
Abstract:
The stability in the Lagrange sense for cellular neural networks (CNNs) has proven to be one of the effective tools to study multi-stable dynamics of the neural networks. In this article, rather than studying the existence and Lyapunov stability of an equilibrium point we investigate multi-stable dynamics of shunting inhibitory cellular neural networks (SICNNs) with time-varying delays and coefficients. This is the first paper that addresses the Lagrange stability for SICNNs. By constructing proper Lyapunov functions and using inequality techniques, we analyze three different types of activation functions, namely, bounded, sigmoid and Lipschitz-like type activation functions. New delay-dependent sufficient criteria are derived to ensure the global Lagrange stability for SICNNs. Furthermore, globally exponentially attractive sets are given for the different activation functions. Finally, an illustrating example with numerical simulations is given to support the theoretical results.
Keywords: Shunting inhibitory cellular neural networks; Lagrange stability; Globally attractive set; Time-varying delays (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077921001715
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:145:y:2021:i:c:s0960077921001715
DOI: 10.1016/j.chaos.2021.110819
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().