Ensemble forecasting for product futures prices using variational mode decomposition and artificial neural networks
Weiping Liu,
Chengzhu Wang,
Yonggang Li,
Yishun Liu and
Keke Huang
Chaos, Solitons & Fractals, 2021, vol. 146, issue C
Abstract:
Product futures are materials support of industrial and society, and forecasting the product futures prices is of great significance to society and enterprises. However, the product futures prices sequences often show non-stationary and non-linear characteristics, so it is significant yet challenging to forecast product futures prices accurately. To cope with this issue, this paper proposes a novel approach that combines variational mode decomposition (VMD) and artificial neural network (ANN) into a “decomposition and ensemble” framework, and the so-called VMD-ANN method is presented for futures prices forecasting. In particular, the proposed approach innovatively introduces the VMD method to transform the problem of futures prices forecasting with high volatility into multiple component time series forecasting with unique central frequency, which greatly reduces the difficulty for forecasting futures prices. Then, the ANN method is utilized to forecast all components independently. Finally, the prediction results of each component are integrated into the final prediction results. In order to demonstrate the performance of the proposed method, four benchmark futures prices, the West Texas Intermediate (WTI) crude oil prices, London Metal Exchange (LME) zinc prices, the New York Mercantile Exchange(NYMEX) natural gas prices and the Commodities Exchange(COMEX) gold prices, are introduced to show the superiority of the proposed method. The experimental results show that whether single-step-ahead forecasting or multi-step-ahead forecasting, the numerical accuracy and trend accuracy of the proposed VMD-ANN significantly outperform some state-of-the-arts methods on both energy futures and metal futures, which verify that the proposed VMD-ANN method can effectively forecast non-stationary and non-linear futures prices series.
Keywords: Product futures; Prices forecasting; Variational mode decomposition; Decomposition and ensemble; Artificial neural networks (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077921001740
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:146:y:2021:i:c:s0960077921001740
DOI: 10.1016/j.chaos.2021.110822
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().