Criticality and the fractal structure of −5/3 turbulent cascades
Juan Luis Cabrera,
Esther D. Gutiérrez and
Miguel Rodríguez Márquez
Chaos, Solitons & Fractals, 2021, vol. 146, issue C
Abstract:
Here we show a procedure to generate an analytical structure producing a cascade that scales as the energy spectrum in isotropic homogeneous turbulence. We obtain a function that unveils a non-self-similar fractal at the origin of the cascade. It reveals that the backbone underlying −5/3 cascades is formed by deterministic nested polynomials with parameters tuned in a Hopf bifurcation critical point. The cascade scaling is exactly obtainable (not by numerical simulations) from deterministic low dimensional nonlinear dynamics. Consequently, it should not be exclusive for fluids but also present in other complex phenomena. The scaling is obtainable both in deterministic and stochastic situations.
Keywords: Cascade; criticality; fractals; Navier-Stokes equation; nonlinear; stochastic; turbulence; maps; complex (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077921002290
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:146:y:2021:i:c:s0960077921002290
DOI: 10.1016/j.chaos.2021.110876
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().