On the bivariate Mersenne Lucas polynomials and their properties
Nabiha Saba and
Ali Boussayoud
Chaos, Solitons & Fractals, 2021, vol. 146, issue C
Abstract:
The main aim of this paper is to introduce new concept of bivariate Mersenne Lucas polynomials {mn(x,y)}n=0∞, we first give the recurrence relation of them. We then obtain Binet’s formula, generating function, Catalan’s identity and Cassini’s identity for this type of polynomials. After that, we give the symmetric function, explicit formula and d’Ocagne’s identity of bivariate Mersenne and bivariate Mersenne Lucas polynomials. By using the Binet’s formula we obtain some well-known identities of these bivariate polynomials. Also, some summation formulas of bivariate Mersenne and bivariate Mersenne Lucas polynomials are investigated.
Keywords: Bivariate Mersenne Lucas polynomials; Bivariate Mersenne polynomials; Catalan’s identity; Binet’s formula; Generating function; Symmetric function; Explicit formula (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077921002538
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:146:y:2021:i:c:s0960077921002538
DOI: 10.1016/j.chaos.2021.110899
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().