EconPapers    
Economics at your fingertips  
 

Fractional model of stem cell population dynamics

S. Mashayekhi and S. Sedaghat

Chaos, Solitons & Fractals, 2021, vol. 146, issue C

Abstract: We develop the fractional model of stem cell population dynamics with state-dependent and time-dependent delays. In this model, the stem cell division rate and self-renewal rate are controlled by an external signal, depending on the effects of the environment’s heterogeneity. We quantify a relationship between the fractional derivative order, which shows the effects of the environment’s heterogeneity and stem cell division and stem cell self-renewal rate. We consider a general form of the fractional neutral delay differential equations with state-dependent and time-dependent delay to study this relationship. First, we show the solution’s existence and uniqueness using the fixed point theorem on the Banach space. We define a completely continuous operator on the non-empty closed convex set to use the fixed point theorem on the Banach space and show this operator has a uniquely defined fixed point. Also, we proof the Ulam–Hyers stability to make sure a close exact solution could be reached using the numerical approximation. Then, we develop a new numerical method based on Jacobi polynomials for solving the fractional neutral delay differential equations with state-dependent and time-dependent delay. We use the least-squares approximation of the candidate function to reduce the solution of fractional neutral delay differential equations to a set of algebraic equations and compare the results obtained by using different collocation points. We evaluate the accuracy of the numerical method, theoretically and numerically. We have used the numerical method to evaluate the fractional model’s behavior of stem cell population dynamics and quantify the relationship between the effects of the environment’s heterogeneity and the rate of stem cell division and stem cell self-renewal.

Keywords: Stem cell population; Self-renewal rate; Environment’s heterogeneity; Fractional neutral delay differential equation; Fixed point theorem; Jacobi polynomials and collocation points; Ulam–Hyers stability (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077921002733
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:146:y:2021:i:c:s0960077921002733

DOI: 10.1016/j.chaos.2021.110919

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:146:y:2021:i:c:s0960077921002733