Projective surjectivity of quadratic stochastic operators on L1 and its application
Farrukh Mukhamedov,
O. Khakimov and
A. Fadillah Embong
Chaos, Solitons & Fractals, 2021, vol. 148, issue C
Abstract:
A nonlinear Markov chain is a discrete time stochastic process whose transitions depend on both the current state and the current distribution of the process. The nonlinear Markov chain over an infinite state space can be identified by a continuous mapping (the so-called nonlinear Markov operator) defined on a set of all probability distributions (which is a simplex). In the present paper, we consider a continuous analogue of the mentioned mapping acting on L1-spaces. Main aim of the current paper is to investigate projective surjectivity of quadratic stochastic operators (QSO) acting on the set of all probability measures. To prove the main result, we study the surjectivity of infinite dimensional nonlinear Markov operators and apply them to the projective surjectivity of the considered QSO. Furthermore, the obtained results are applied to the existence of the positive solution of some Hammerstein integral equations.
Keywords: Quadratic stochastic operator; Projective surjection; Nonlinear equation (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007792100388X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:148:y:2021:i:c:s096007792100388x
DOI: 10.1016/j.chaos.2021.111034
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().