EconPapers    
Economics at your fingertips  
 

Resonant response drives sensitivity of Josephson escape detector

A.A. Yablokov, E.I. Glushkov, A.L. Pankratov, A.V. Gordeeva, L.S. Kuzmin and Il’ichev, E.V.

Chaos, Solitons & Fractals, 2021, vol. 148, issue C

Abstract: The Josephson junction as a switching detector of weak signals is investigated in presence of noise in the frame of rotating pendulum model. The parameter range, where the detection can be more efficient, is found. It has been demonstrated, that with decrease of the signal power the double minima of the mean switching time and the standard deviation are transformed into a single minimum, which corresponds to interplay between noise suppression and resonant activation regimes. The resonant nature of escape allows to detect weak signals, whose amplitudes are weaker than the difference between critical current and bias current of a Josephson junction. With decrease of damping an efficient detection becomes possible even at subharmonics of the resonance frequency.

Keywords: Josephson escape detector; Resonant response; Resonant activation; Noise-induced escapes (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077921004124
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:148:y:2021:i:c:s0960077921004124

DOI: 10.1016/j.chaos.2021.111058

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:148:y:2021:i:c:s0960077921004124