EconPapers    
Economics at your fingertips  
 

Deterministic mechanisms of spiking in diffusive memristors

Yury Ushakov, Amir Akther, Pavel Borisov, Debi Pattnaik, Savel’ev, Sergey and Alexander G. Balanov

Chaos, Solitons & Fractals, 2021, vol. 149, issue C

Abstract: Diffusive memristors, which have been recently fabricated and measured, attract a significant interest being among the best candidates to mimic neuron activities and to implement novel computing paradigms. Such devices are capable of exhibiting a combination of dynamical, chaotic, and stochastic phenomena needed for efficient neuromorphic computational systems. However, understanding the contribution of deterministic and stochastic dynamics to the functional properties of a diffusive memristor is still an open problem. To study the deterministic mechanisms governing the dynamics of diffusive memristors, we analyze a model of a memristive circuit when the effects of the temperature noise are neglected. We reveal instabilities, which shape the current-voltage characteristic of the device and imply the onset of current self-oscillations. Finally, the results of modeling are compared with experimentally measured current-voltage characteristics.

Keywords: Diffusive memristor; Deterministic dynamics; Spiking (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077921003519
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:149:y:2021:i:c:s0960077921003519

DOI: 10.1016/j.chaos.2021.110997

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:149:y:2021:i:c:s0960077921003519