Nonlinear control of infection spread based on a deterministic SEIR model
Vinicius Piccirillo
Chaos, Solitons & Fractals, 2021, vol. 149, issue C
Abstract:
In this study, a mathematical model (SEIR model) with a restriction parameter is used to explore the dynamic of the COVID-19 pandemic. This work presents a nonlinear and robust control algorithm based on variable structure control (VSC) to control the transmission of coronavirus disease (COVID-19). The VSC algorithm is a control gain switching technique in which is necessary to define a switching surface. Three switching surfaces are proposed based on rules that depend on: (i) exposed and infected population, (ii) susceptible and infected population, and (iii) susceptible and total population. In case (iii) a model-based state estimator is presented based on the extended Kalman filter (EKF) and the estimator is used in combination with the VSC. Numerical results demonstrate that the proposed control strategies have the ability to flatten the infection curve. In addition, the simulations show that the success of lowering and flattening the epidemic peak is strongly dependent on the chosen switching surfaces. A comparison between the VSC and sliding mode control (SMC) is presented showing that the VSC control can provide better performance taking into account two aspects: time duration of pandemic and the flattened curve peak with respect to SMC.
Keywords: Control of infection spread; SEIR model; COVID-19; Variable structure control (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077921004057
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:149:y:2021:i:c:s0960077921004057
DOI: 10.1016/j.chaos.2021.111051
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().