EconPapers    
Economics at your fingertips  
 

The ‘wavelet’ entropic index q of non-extensive statistical mechanics and superstatistics

Mahmut Akıllı, Nazmi Yılmaz and K. Gediz Akdeniz

Chaos, Solitons & Fractals, 2021, vol. 150, issue C

Abstract: Generalized entropies developed for non-extensive statistical mechanics are derived from the Boltzmann-Gibbs-Shannon entropy by a real number q that is a parameter based on q-calculus; where q is called ‘the entropic index’ and determines the degree of non-extensivity of a system in the interval between 1 and 3. In a very recent study, we introduced a new calculation method of the entropic index q of non-extensive statistical mechanics. In this study, we show the mathematical proof of this calculation method of the entropic index. Firstly, we propose that the number of degrees of freedom, n is proportional to the inverse of the wavelet scale index,n≡1iscale, where iscale is a wavelet based parameter called wavelet scale index that quantitatively measures the non-periodicity of a signal in the interval between 0 and 1. Then, by applying this proposition to the superstatistics approach, we derive the equation that expresses the relationship between the entropic index and the wavelet scale index, q=1+2iscale. Therefore, we name this q-index as the ‘wavelet’ entropic index. Lastly, we calculate the Abe entropy, Landsberg-Vedral entropy and q-dualities of the Tsallis entropy of the Logistic Map and Hennon Map using the ‘wavelet’ entropic index, and based on our results, compare and discuss these generalized entropies.

Keywords: ‘Wavelet’ entropic index; Wavelet scale index; Degrees of freedom; Non-extensive statistical mechanics; Generalized entropies; Superstatistics (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077921004483
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:150:y:2021:i:c:s0960077921004483

DOI: 10.1016/j.chaos.2021.111094

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:150:y:2021:i:c:s0960077921004483