Convergence analysis of the homogeneous second order difference method for a singularly perturbed Volterra delay-integro-differential equation
Ömer Yapman and
Gabil M. Amiraliyev
Chaos, Solitons & Fractals, 2021, vol. 150, issue C
Abstract:
A linear Volterra delay-integro-differential equation with a singular perturbation parameter ε is considered. The problem is discretized using exponentially fitted schemes on the Shishkin type meshes. It is proved that the numerical approximations generated by this method are O(N−2lnN) convergent in the discrete maximum norm, where N is the mesh parameter. Numerical results show a good agreement with the theoretical analysis.
Keywords: Volterra delay-integro-differential equation; Singular perturbation; Finite difference method; Uniform convergence (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077921004549
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:150:y:2021:i:c:s0960077921004549
DOI: 10.1016/j.chaos.2021.111100
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().