Study on the mathematical modelling of COVID-19 with Caputo-Fabrizio operator
Mati ur Rahman,
Saeed Ahmad,
R.T. Matoog,
Nawal A. Alshehri and
Tahir Khan
Chaos, Solitons & Fractals, 2021, vol. 150, issue C
Abstract:
In this article we study a fractional-order mathematical model describing the spread of the new coronavirus (COVID-19) under the Caputo-Fabrizio sense. Exploiting the approach of fixed point theory, we compute existence as well as uniqueness of the related solution. To investigate the exact solution of our model, we use the Laplace Adomian decomposition method (LADM) and obtain results in terms of infinite series. We then present numerical results to illuminate the efficacy of the new derivative. Compared to the classical order derivatives, our obtained results under the new notion show better results concerning the novel coronavirus model.
Keywords: COVID-19; Fractional epidemic model; Caputo-Fabrizio operator; Existence and uniqueness; Numerical simulations (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077921004756
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:150:y:2021:i:c:s0960077921004756
DOI: 10.1016/j.chaos.2021.111121
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().