Simple harmonic and damped motions of dissipative solitons in two-dimensional complex Ginzburg-Landau equation supported by an external V-shaped potential
Bin Liu,
Wan Bo,
Jiandong Liu,
Juan Liu,
Jiu-lin Shi,
Jinhui Yuan,
Xing-Dao He and
Qiang Wu
Chaos, Solitons & Fractals, 2021, vol. 150, issue C
Abstract:
Dissipative solitons based on the complex Ginzburg-Landau (CGL) model show many novel dynamic properties. In this paper, a series of novel simple harmonic and damped motion dynamics of soliton supported by induced V-shaped potential in the cubic-quintic CGL model was investigated. Without viscosity, the role of these potential wells in stabilizing dissipative soliton forms periodic oscillation, just like simple harmonic motion. The influence of potential slope and oscillating amplitude on the period and momentum of simple harmonic motion were numerically analyzed. By adding a small diffusivity term (viscosity) into the CGL model, a significant damping effect is applied to the simple harmonic motion of dissipative solitons. The evolution mechanism of the energy and momentum during the simple harmonic motion and the damped motion was numerically studied. In addition, the energy gain/loss in the CGL model has no impact on the dynamical evolution of simple harmonic motion and damped motion of dissipative solitons.
Keywords: Optical soliton; Dissipative system; Ginzburg-Landau; Simple harmonic motion; Damped motion (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007792100480X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:150:y:2021:i:c:s096007792100480x
DOI: 10.1016/j.chaos.2021.111126
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().