Modelling and simulations of the SEIR and Blood Coagulation systems using Atangana-Baleanu-Caputo derivative
Mohammad Partohaghighi and
Ali Akgül
Chaos, Solitons & Fractals, 2021, vol. 150, issue C
Abstract:
In this work, we investigate the SEIR and Blood Coagulation systems using a specific type of fractional derivative. SEIR epidemic model which outlines the close communication of contagious disease is estimated to dominate the measles epidemic for infected groups. Moreover, Blood coagulation is a protective tool that restricts the loss of blood upon the rupture of endothelial tissues. This process is a complicated one that is managed by various mechanical and biochemical mechanisms. Indeed, the fractional Atangana-Baleau-Caputo derivative operator is exercised to achieve the new models of fractional equations of the SEIR epidemic and Blood Coagulation. Moreover, the existence and uniqueness of the considered systems are checked. Also, simulations are provided under selecting different amounts of fractional orders using Atangana-Toufik method. Additionally, chaotic behaviors of the proposed models by adopting different values of orders are presented, clearly to show the robustness and reliability of the recommended scheme. During graphs of simulations which are obtained under applying various values of orders, show that the used algorithm is highly effective to solve such fractional systems employing various initial conditions(ICs)compared to the other methods.
Keywords: Mittag-Leffler kernel; Numerical method; Fractional SEIR model; Fractional Blood Coagulation model (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077921004896
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:150:y:2021:i:c:s0960077921004896
DOI: 10.1016/j.chaos.2021.111135
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().