On the contraction ratio of iterated function systems whose attractors are Sierpinski n-gons
Abdulrahman Abdulaziz and
Judy Said
Chaos, Solitons & Fractals, 2021, vol. 150, issue C
Abstract:
In this paper we apply the chaos game to n-sided regular polygons to generate fractals that are similar to the Sierpinski gasket. We show that for each n-gon, there is an exact ratio that will yield a perfect gasket. We then find a formula for this ratio that depends only on the angle π/n.
Keywords: Chaos game; Fractals; Iterated function systems; Sierpinski gasket (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007792100494X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:150:y:2021:i:c:s096007792100494x
DOI: 10.1016/j.chaos.2021.111140
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().