Discrete Prabhakar fractional difference and sum operators
Pshtiwan Othman Mohammed,
Thabet Abdeljawad and
Faraidun Kadir Hamasalh
Chaos, Solitons & Fractals, 2021, vol. 150, issue C
Abstract:
The Prabhakar fractional operator is commonly acclaimed as the queen model of fractional calculus. Our aim in this article is to introduce the notion of the discrete Prabhakar fractional operator with discrete generalized Mittag-Leffler function in the kernel, in the context of discrete fractional calculus. Also, we examine some relationships between our new model with the discrete Atangana–Baleanu fractional model implemented by Abdeljawad. By doing these relationships, we can find a few interesting properties of both, as well as of the original discrete Atangana–Baleanu fractional models and their iterated forms. We can confirm that this is the first paper introducing and studying the discrete Prabhakar fractional operators in the context of discrete fractional calculus.
Keywords: Discrete Prabhakar fractional sum; Discrete fractional difference and sum; Discrete generalized ML functions (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077921005361
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:150:y:2021:i:c:s0960077921005361
DOI: 10.1016/j.chaos.2021.111182
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().