EconPapers    
Economics at your fingertips  
 

Implementation of a reservoir computing system using the short-term effects of Pt/HfO2/TaOx/TiN memristors with self-rectification

Hojeong Ryu and Sungjun Kim

Chaos, Solitons & Fractals, 2021, vol. 150, issue C

Abstract: Given the limitations of von Neumann computing systems, we propose a high-performance reservoir computing system as an alternative. These systems operate as neural networks that store the states of the input signal and require a readout layer for data processing and learning. The advantage of this system is that training only takes place at the readout layer leading to good energy efficiency and low power consumption. In this paper, we implement a memristor-based hardware reservoir computing system using HfO2/TaOx bilayer based memristor that can imitate the short-term memory effects. We first characterize the volatility and record the self-rectification I-V curves of the HfO2/TaOx bilayer device. We also investigate the transient characteristics in terms of the interval required between pulse stimulation to return its initial state. In terms of transmitting information, 4 bits is a significant unit size because at least 4 bits are required to represent a single-digit number. Motivated by this, we successfully implemented a binary 4-bit code ranging from [0 0 0 0] to [1 1 1 1] in the fabricated memristor that can be used as the input signal to a reservoir layer.

Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077921005774
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:150:y:2021:i:c:s0960077921005774

DOI: 10.1016/j.chaos.2021.111223

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:150:y:2021:i:c:s0960077921005774