EconPapers    
Economics at your fingertips  
 

A new approach to measure the fractal dimension of a trajectory in the high-dimensional phase space

Reza Yaghoobi Karimui

Chaos, Solitons & Fractals, 2021, vol. 151, issue C

Abstract: In this paper, we introduce a new approach, which measures the fractal dimension (FD) of a trajectory in the multi-dimensional phase space based on the self-similarity of the sub-trajectories. Actually, we first compute the length of the sub-trajectories extracted from zooming out the trajectory in the phase space and then estimate the average length of the sub-trajectories in these zooms. Finally, we also calculate the fractal dimension of the trajectory based on the exponent of the power-law between the average length and the zoom-out size. For validating this approach, we also use the Weierstrass cosine function, which can generate fractured (fractal) trajectories with different dimensions. A set of the EEG segments recorded under the eyes-open and eyes-closed resting conditions is also employed to validate this new method by the data of a natural system. Generally, the outcomes of this method represent that it can well follow variations create in the dimension of a fractal trajectory. Therefore, since this new dimension can be estimated in every high-dimensional phase space, it is a good choice for investigating the dimension and the behavior of the high-dimensional strange attractors.

Keywords: Self-similarity; Fractal dimension; Trajectory; Phase space; Strange attractor (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077921005932
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:151:y:2021:i:c:s0960077921005932

DOI: 10.1016/j.chaos.2021.111239

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:151:y:2021:i:c:s0960077921005932