Generalized Hermite polynomials for the Burgers hierarchy and point vortices
Nikolay A. Kudryashov
Chaos, Solitons & Fractals, 2021, vol. 151, issue C
Abstract:
Rational solutions of equations for the Burgers hierarchy are considered. Using self-similar variables this hierarchy is reduced to the family of nonlinear ordinary differential equations. Then the family is transformed to the hierarchy of non-autonomous linear differential equations by means of the Cole-Hopf formula. This hierarchy is a generalization of the second-order equation for Hermite polynomials. It is shown that every member of the hierarchy for ordinary differential equation has the solution in the form of polynomials. Properties of solutions of generalized Hermite equations in the form the special polynomials are studied. A recursion relation that can be used for finding corresponding polynomials for every member is given. It is proved that the well-known property for Hermite polynomials connecting two polynomials can be used for all polynomials of the generalized Hermite hierarchy. It is shown that the Cole-Hopf transformation is a direct consequence of the differential connection between two special polynomials in the hierarchy of Hermite equations. A derivation of the generalized Tkachenko equations is given for polynomials of the generalized Hermite hierarchy whose roots correspond to point vortices in the background flow.
Keywords: Burgers hierarchy; Rational solution; Generalized Hermite polynomial; Tkachenko equation; Point vortices configuration (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007792100610X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:151:y:2021:i:c:s096007792100610x
DOI: 10.1016/j.chaos.2021.111256
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().