Phase locking of ultra-low power consumption stochastic magnetic bits induced by colored noise
Zhiqiang Liao,
Kaijie Ma,
Siyi Tang,
Md Shamim Sarker,
Hiroyasu Yamahara and
Hitoshi Tabata
Chaos, Solitons & Fractals, 2021, vol. 151, issue C
Abstract:
Superparamagnetic tunnel junctions (STJs) are nanostructures with very low turnover barriers. The barrier height of an STJ is generally equal to the heat energy at room temperature; thus, it can oscillate automatically without external driving. Previous studies have shown that the randomness of an STJ can be driven by a subthreshold voltage. This synchronization can be adjusted using electrical noise, which is often considered as zero-field Gaussian white noise. However, the actual circuit and environment are inevitably associated with colored noise, which has not been considered previously. In this work, numerical simulations were performed to study the phase-locking characteristics of a single STJ with the aid of several typical types of colored noise. The results show that the phase-locked behavior of an STJ can be effectively enhanced by colored noise whose power spectral density per unit of bandwidth is proportional to its frequency. Meanwhile, colored noise whose power spectral density per unit of bandwidth and frequency are inversely proportional can suppress the synchronization of STJs by suppressing the increase in junction frequency.
Keywords: Stochastic magnetic bit; Superparamagnetic tunnel junction; Phase locking; Synchronization; Ultra-low power consumption; Colored noise (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077921006160
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:151:y:2021:i:c:s0960077921006160
DOI: 10.1016/j.chaos.2021.111262
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().