An asymptotic structure of the bifurcation boundary of the perturbed Painlevé-2 equation
O.M. Kiselev
Chaos, Solitons & Fractals, 2021, vol. 151, issue C
Abstract:
Solutions of the perturbed Painlevé-2 equation are typical for describing a dynamic bifurcation of soft loss of stability. The bifurcation boundary separates solutions of different types before bifurcation and before loss of stability. This border has a spiral structure. The equations of modulation of the bifurcation boundary depending on the perturbation are obtained. Both analytic and numeric results are given.
Keywords: Bifurcation; Perturbation; Painlevé equation (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077921006536
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:151:y:2021:i:c:s0960077921006536
DOI: 10.1016/j.chaos.2021.111299
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().