Stochastic resetting in the Kramers problem: A Monte Carlo approach
Julia Cantisán,
Jesús M. Seoane and
Miguel A.F. Sanjuán
Chaos, Solitons & Fractals, 2021, vol. 152, issue C
Abstract:
The theory of stochastic resetting asserts that restarting a search process at certain times may accelerate the finding of a target. In the case of a classical diffusing particle trapped in a potential well, stochastic resetting may decrease the escape times due to thermal fluctuations. Here, we numerically explore the Kramers problem for a cubic potential, which is the simplest potential with a escape. Both deterministic and Poisson resetting times are analyzed. We use a Monte Carlo approach, which is necessary for generic complex potentials, and we show that the optimal rate is related to the escape times distribution in the case without resetting. Furthermore, we find rates for which resetting is beneficial even if the resetting position is located on the contrary side of the escape.
Keywords: Stochastic resetting; Monte Carlo; Kramers problem; Mean first passage time (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077921006962
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:152:y:2021:i:c:s0960077921006962
DOI: 10.1016/j.chaos.2021.111342
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().