EconPapers    
Economics at your fingertips  
 

An analytical formulation for multidimensional continuous opinion models

Lucía Pedraza, Juan Pablo Pinasco, Nicolas Saintier and Pablo Balenzuela

Chaos, Solitons & Fractals, 2021, vol. 152, issue C

Abstract: Usually, opinion formation models assume that individuals have an opinion about a given topic which can change due to interactions with others. However, individuals can have different opinions on different topics and therefore n-dimensional models are best suited to deal with these cases. While there have been many efforts to develop analytical models for one dimensional opinion models, less attention has been paid to multidimensional ones. In this work, we develop an analytical approach for multidimensional models of continuous opinions. We show that for any generic reciprocal interactions between agents, the mean value of initial opinion distribution is conserved. Moreover, for positive social influence interaction mechanisms, the variance of opinion distributions decreases with time and the system converges to a delta distributed function. In particular, we calculate the convergence time when agents get closer in a discrete quantity after interacting, showing a clear difference between cases where the approach is through Manhattan or Euclidean distance.

Keywords: Opinion formation; Multidimensional opinion space; Analytical formulation (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077921007220
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:152:y:2021:i:c:s0960077921007220

DOI: 10.1016/j.chaos.2021.111368

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:152:y:2021:i:c:s0960077921007220